

CANVAS: Calibration and Validation for SAR

Albert Rabaneda¹, Giuseppe Griecco², Marcos Portabella³, Federico Cossu³, Morten Hansen¹, Eirik Malnes⁴, Temesgen Yitayew⁴

¹MET Norway, ²CNR-ISMAR, ³CSIC-ICM, ⁴NORCE

Intro

Aim: To create a Quality Assessment framework for SAR instruments, in a wide perspective, for past, present and future SAR.

This includes L1 and L2 products (over land and ocean) for which we will:

- Definition of Cal/Val procedures
- Create a Guidance for Uncertainty Metrics (GUM)
- Define Fiducial Reference Measurements (FRM)
- Create an open-source software for SAR Cal/Val
- Demonstrate the tool capabilities

As L2 products we consider:

- Soil Moisture (SSM)
- Wet Snow (SWS)
- Ocean Surface Vector Wind (OSVW)
- Significant Wave Height (SWH)

EDAP & EDAP+ legacy

Data Provider Documentation Review				Detailed Validation					
Product	Metrology	Product Generation							
Product Details	Sensor Calibration & Characterisation	Image Formation & Calibration	Measurmenet	Absolute Radiometric Calibration Method	Radiometric Stability Method	Sensitivity Validation Method	Polarimetric Accuracy Method	Interferometric Accuracy Method	
Availability &	Geometric Calibration &	Geometric		Absolute Radiometric Calibration Results Compliance	Radiometric Stability Results Compliance	Sensitivity Validation Results Compliance	Polarimetric Accuracy Results Compliance	Interferometric Accuracy Results Compliance	
Accessibility	Characterisation	Processing	Geometric	Spatial Resolution Method	Geolocation Accuracy Method				
Product Format, Flags & Metadata	Metrological Traceability Documentation	Retrieval Algorithm		Spatial Resolution Results Compliance	Geolocation Accuracy Results	_			
User Documentation	Uncertainty Characterisation	Mission-Specific Processing			Compliance				
	Ancillary Data		J	Missing L2 land and L2 ocean products					

EDAP & EDAP+ legacy

Quality assessment undertaken during EDAP+ project

The SAR Calibration Toolbox (SCT) includes a tool for each of the quality parameters

Quality parameter	Metric	Data type	Cal. Sites	
	Spatial resolution	Point Target	Mission dedicated sites: Rosamond Corner Reflector Array (California) Surat Basin (Australia)	
IRF	Peak-to-Side Lobe ratio	Point Target		
	Integrated Side Lobe ratio	Point Target		
Geometry	Localization	Point Target		
	Calibration constant	Point Target		
	Polarimetric imbalance	Point Target		
	Elevation Antenna Pattern	Rain Forest	Amazon, Congo Sahara Greenland	
	Azimuth scalloping	Rain Forest		
Radiometry	Beam-to-beam offset	Rain Forest		
	Equivalent Number of Looks (ENL)	Rain Forest, Desert, Ice Sheets		
	Noise level	Low backscatter	Calm sea areas (e.g., Doldrums) Lakes (for small swaths, e.g., Mono Lake - California) Deserts	
Interferometry	erferometry Coherence		Salar de Uyuni	

Table 1-1: Parameters for the assessment of SAR data quality

Numerical Ocean Calibration (NOC)

• NOC and possibly Higher-order calibration (HOC) to validate SAR L1 calibration and further correct SAR NRCS to align its behaviour to that predicted by the CMOD7 GMF.

SAR validation over ocean: Triple collocation analysis

- Aim: To adapt and validate the triple collocation (TC) method for SAR geophysical product validation
- TC performed over different ocean regions & periods
- Buoy-SAR-ERA for validation of both SAR-derived OSVW & SWH
 - Use of both coastal and open-ocean buoy data
- SAR-SCAT-ERA for validation of SAR-derived OSVW data
- 3 different r2/TC methods will be evaluated
 - Wind spectra
 - Spatial variances
 - Intercalibration
- TC may also be used to validate SAR-derived SMC
 - Use of in situ from International Soil Moisture Networks (https://ismn.earth/en/networks/)

Representativeness error estimation

Wind spectra

Spatial variances

Intercalibration

Additional validation activities

• Spectral and spatial variance analyses to assess the geophysical consistency of the L2 OCN OSVW fields, the presence of noise, and their ability to resolve small-scale wind variance

• Direct comparisons between SAR-derived geophysical products and in-situ measurements

FRM definition and characteristics

- Reference records for Cal/Val of satellite instruments
- Ground-based and airborne measurements (*in-situ*)
- Independent, tailored, and fully characterized measurements
- Ensure accuracy, reliability and consistency in satellite data over time
- Gold standard to assess EO dataset accuracy and quality

[1] Goryl P, Fox N, Donlon C, Castracane P. Fiducial Reference Measurements (FRMs): What Are They? Remote Sensing. 2023; 15(20):5017. https://doi.org/10.3390/rs15205017.

National Data Buoy Center

- OSVW
- Wave spectra ($_{\rightarrow}$ SWH)
- Ancillary information to compute stress-equivalent winds
- Several programs: NDBC, TAO, etc. covering the entire globe
- Availability of historical data
- Quality Control (NDBC Technical Document 09-02)
- Available also from ECMWF-MARS archive

Scatterometer-derived winds

Scatter-density plot of ASCAT U10S wind speed versus MARS buoy U10N wind speed. The scores of the CC, the bias, and the SD of the speed differences are shown in the legend. A total of 300,000 collocations are shown over the period 2009-2014. [4]

[4] F. Polverari et al., "On High and Extreme Wind Calibration Using ASCAT," in IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-10, 2022, Art no. 4202210, doi: 10.1109/TGRS.2021.3079898.

- Accuracy: ±1 ms⁻¹, ±20°
- Accuracy stability over decades
- Large constellation: 8 scats
- Collocated with ECMWF U10S winds
- Period: 2007-present
- Data available @ ICM-CSIC

Canvas tool - Data ingestion

Despite of being developed for SAR, the tool can be used for any other L2 product

Canvas tool - Quality assessment

Despite of being developed for SAR, the tool can be used for any other L2 product

Canvas tool - Outputs

Despite of being developed for SAR, the tool can be used for any other L2 product

Ongoing work

- Review Cal/Val procedures, GUM and FRM
- Development the tool

Future work

- Show-case study for Sentinel-1 (or other)
- Investigate the possibility of SAR cross-calibration and cross-validation between different instruments/missions

